
NOTATION 

dA i, an element of the i-th surface; dE(idA.), flux density in the vicinity of the point 
-- . . . , 1 

redAi; R I and R 2, prznczpal radxl of curvature of the reflected front; K = I/RIR 2, total 
(Gaussian) curvature of the reflected front; H = 0.5((I/R I) + (I/R2)), average curvature of 
the reflected front; p, reflection coefficient of the specular surface. 
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NONLINEAR EFFECTS DURING FILTRATION IN BEDS WITH 

LARGE-SCALE STRUCTURAL INHOMOGENEITY 

Yu. A. Buevich and V. A. Ustinov UDC 532.546.7:622.276.3 

A model of the nonlinear hydraulic relation between the porous volumes of a signi- 
ficantly inhomogeneous bed is proposed, and its influence on the draining of unit 
volume of borehole, as well as on the curves of bed-pressure recovery and on the 
indicator diagrams of the borehole, is investigated. 

Recently, the industrial petroleum content of distinctive clay bituminous rocks with 
unusual (in comparison with well-known collectors) and in many respects unique properties 
has been established; the collector of the so-called Bazhenov formation of western Siberia 
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serves as the clearest example, and is exceptionally important in applied terms [i, 2]. 
Traditional methods cannot be applied to the rock of the Bazhenov formation: the well- 
known geophysical and hydrodynamic methods, which are highly recommended for other depo- 
sits, do not "work" in this case, or lead to very contradictory results. This seriously 
hinders calculations of the available reserves of petroleum, estimation of the productive 
characteristics of the collector, and the development of strategies and tactics on the 
more rational exploitation of deposits. 

There have been many attempts to construct a well-founded structural-hydrodynamic model 
of these collectors; indicative examples may be found in [3-12]. These attempts are based 
on concepts, in various combinations, regarding infinite, closed, or quasi-closed petroleum- 
containing volumes with different degrees of inhomogeneity, regarding the presence or ab- 
sence of additional petroleum sources in the volumes separating the cracks or highly porous 
layers or in the adjacent beds, regarding the strong or weak compressibility of a porous 
body in the extraction of petroleum, etc. As shown by critical analysis in [12], the full 
total of the geological and hydrodynamic information which has been accumulated cannot be 
explained by models based on hypotheses regarding a homogeneous infinite or closed bed, 
regarding a system of finite saturated volumes with a constant hydraulic interrelation, and 
regarding an infinite cracked-porous bed with double porosity and permeability. The so, 
called "quasiclosed elastoplastic" model, in which clear account is taken of the increase 
in filtration region (inclusion of new sections of the collector in the process) with ex- 
haustion of the deposit and deformation of the collector with drop in effective bed pres~ 
sure, is preferred [5]. 

Formulation of the Model 

The most significant features of petroleum extraction from beds of the Bazhenov forma~ 
tion are as follows [1-12]. In the initial period of borehole operation, the face pressure 
sharply falls (as in a closed finite bed), but after some time the rate of this drop is 
much reduced (as if additional petroleum reservoirs have come into action), while in a 
series of cases pulsating conditions of borehole operation are observed. When the borehole 
is switched off, the characteristic time for pressure recovery is many times larger than 
that for homogeneous beds, although usually the pressure is not restored to the initial 
level of the bed pressure. On the indicator diagrams of the boreholes, there appear sec- 
tions which are convex to the pressure axis, as if additional sections are included in the 
drainage region of the collector some time after the onset of borehole operation. Finally, 
the yields of even close-lying boreholes vary over broad limits, very strong differences in 
the composition of petroleum from these boreholes are noted, and the effective values of 
the bed pressure calculated from their operational indices also differ considerably. All 
this indicates the presence of significant large-scale inhomogeneity of collectors of Ba- 
zhenov type, which is also confirmed by the results of hydroprobing and a series of indepen- 
dent purely geological data. 

According to the most reliable information and hypotheses (see [i, 2, 5, 12], for ex- 
ample), the collector of the Bazhenov formation at the large-scale hierarchical level is a 
set of individual porous and permeable volumes ("lenses") with linear dimensions from hun- 
dreds of meters to a few kilometers distributed in a consolidated weakly permeable matrix. 
It is possible to establish a hydraulic relation through the matrix between individual len- 
ses under definite conditions; this relation is significantly nonlinear and, in any case, 
cannot be regarded as constant or weakly varying in the course of filtration (in contrast, 
for example, to the models in [i0, 11]). The interaction of individual lenses ultimately 
depends on the features of their mutual position, their form, the position of the boreholes 
within them, and many other random factors, which cannot be taken into account within the 
framework of a single determinate theory. Therefore, some mean axisymmetric picture corres- 
ponding to a single plane lens of circular form with a borehole at its center is considered 
below; inflow of liquid from the surrounding medium, modeling "inrushes" of petroleum from 
neighboring lenses, is possible at the external boundary of the lens under appropriate con- 
ditions. Note that expansion of the filtration region over time was considered earlier in 
[5] on the basis of the formal assumption that the rates of this expansion and the increase 
in porosity of the collector with drop in pressure are proportional. 

The appearance of flow between the lenses may be associated with two basic factors (see 
[12], for example). First, when the pressure drop between them reaches some critical value, 
hydraulic breakdown of the matrix rock separating the lenses is possible. Second, the flow 
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in a weakly permeable clay matrix must be plastic in character, i.e., only begins when the 
pressure gradient reaches a critical limiting value, which leads to some global effect [13]. 
Therefore, even in accordance with the obvious generalization of the well-known Bingham 
model, it is supposed that flow from the surrounding medium into the given lens appears in 
the case when the pressure Pb at its external boundary is less than the critical value p, < 
p~. This flow ceases when Pb reaches a second critical value p**, where p~ > p** > p,. 
This inequality means that, for crack opening (formation) or for the onset of motion in 
porous capillaries, more considerable forces are usually required than for maintenance of 
motion in already-existing cracks or in capillaries. The mechanism of "switching on and off" 
the motion is analogous to the well-known principle of "dry" friction, when the static force 
of friction is more than the dynamic force. 

So as to be specific and simple, the porous material of the lens is assumed to be homo- 
geneous and characterized by coefficients which are not dependent on the pressure of the 
fluid: the permeability k, piezoconductivity K, and hydroconductivity j = kb/~. Consider- 
ing only linear (conforming to Darcy's law) filtration in elastic conditions, the equation 
for pressure in conditions of axial symmetry is written 

Ot r Or r , 

where the dimensionless time and radial coordinate, with scales R2/K and R, respectively, 
are introduced. At the borehole (r = g), the boundary condition of constant yield or face 
pressure is given. When e << 1 

lim(r---OP-- / = H  or P'r=~=Po. (2) 
r~O \ u, / 

At the external boundary of the lens (r = I), the switching condition is written in the 
following form. For transition from the state of rest at this boundary to the state of 
motion through it with reduction in Pb 

: Op =;Q-~-~(P,--Pb), Pb<P,, (3) 
~r.~=l { O, Pb>P,.  

For the cessation of an initially-existing flow through the lens boundary with increase 
in pressure Pb there, the switching condition takes the form in Eq. (3) but with replace- 
ment of p, in Eq. (3) by p**. Thus, the reduced flux through the lens boundary appearing 
in Eq. (3) increases discontinuously from zero to Q when it develops, and changes from Q - 
8(P** - P*) to zero on disappearance. The quantities Q and ~ and also p, and pc, must be 
regarded as characteristics of the collector which are specified a priori. The quantities 
H in Eq. (2) and Q in Eq. (3) are proportional to the borehole yield and the volume flux 
through the lens boundary, with coefficients inverse to j. 

The initial conditions on the pressure field depend on the specifics of the particular 
problems and are formulated separately for different problems. 

The boundary conditions of switching are significantly nonlinear, but the nonlinear 
problems which arise for Eq. (i) are easily reduced to a system of linear boundary prob- 
lems in limited time intervals, which may be solved, for example, using the standard Fou- 
rier method of variable separation. Such solutions allow as high an accuracy as is desired 
to be obtained, but are very cumbersome, since they entail calculating the roots of transcen- 
dental equations and summing sufficiently complex series of Bessel functions, and therefore 
they are unfavorable even in computer calculations, requiring large amounts of processor 
time. Therefore, simple but sufficiently effective approximate solutions obtained by the 
method of integral relations are used below [14]. The accuracy of these solutions is com- 
pletely satisfactory. Thus, in the problems below regarding borehole use with constant 
yield or face pressure (also solved by the Fourier method), the maximum errors of the in- 
tegral-relation method are no greater than 2 and 10%, respectively. 

Problem of Borehole Startup 

As the initial condition in the given case, it is natural to take 

Plt=0 = p| (4) 

which corresponds to an initially unperturbed lens; the solution of the problem in Eqs. (i)- 
(4) is sought in the form 
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Fig. i. Variation in pressure at lens boundary (a) and 
at face (b) in borehole operation with constant yield 
(p, = 47, p** = 48.5, p~ = 50 MPa, B = 0.i, H = 1.0 MPa, 
borehole radius 0.15 m, lens radius 700 m): I) Q = 0; 
2) 0.5; 3) 1.0; 4) i.i; 5) 1.6 MPa; the dashed line 
corresponds to the onset of the development of self-os- 
cillation; Pb, P0, MPa. 

p(t, r ) = I  px(t' r), t ~ T ,  ( 5 )  
/p~(t, r) + pi (t - -  T, r), t > T ,  

where T is the time of appearance of a liquid influx from the surrounding medium. The func- 
tion Pl in Eq. (5) describes the perturbing influence of a sink at the coordinate origin on 
the pressure field, while P2 describes the influence of influx through the lens boundary. On 
the basis of Eqs. (2)-(4), it is simple to write the boundary and initial conditions which 
must be imposed on these functions. 

Within the framework of the integral-relations method, it is assumed that 

IO, r > R ~ ( t )  I o ~ t  
p, (t, n - p~ + iu.,. (z, ~), ~ < R~ (t) I "~ < ~ < T, 

~u~ ( t  - -  ~q,  r ) ,  t > "c:; 

( 6 )  

[0, r ~ ' R i ( t )  ] 
Pi(t,  r ) =  ]u3[t, r), r > R i ( t )  ] 0 ~ . ~ l ~ T e ,  ( 7 )  

~u4 (t - -  ~2, r), t > ~0. 

H e r e  R 1 and  R 2 a r e  d i m e n s i o n l e s s  c o o r d i n a t e s  d e t e r m i n i n g  t h e  b o u n d a r i e s  o f  t h e  c o r r e s p o n d i n g  
" i n f l u e n c e "  r e g i o n s ;  x I and  x 2 a r e  d i m e n s i o n l e s s  t i m e s  o f  p r o p a g a t i o n  o f  t h e  p e r t u r b a t i o n  
f r o m  t h e  b o r e h o l e  t o  t h e  e x t e r n a l  l e n s  b o u n d a r y  and b a c k .  C h o o s i n g  t h e  t r i a l  f u n c t i o n s  i n  
the necessary manner and requiring that the boundary conditions and the material-balance 
equation be satisfied, the integral-relation method [14] gives the, following result for a 
borehole with fixed yield 

u,({, r)==/-/In R,r H2 [~[(--fIr ISR, ] - -  13, 
u~ (t, r) = H In r - -  (t-I/2)(r 2 - -  1) --2Ht, 

(Q + 2[tHt)(r - -  Ri) 2 ( 8 )  
u.~ (t, r )  -- 

(1 - -  R,.)[2 + [~ (1 -- R~)] 

ua(t, r ) =  1 15 r ~ F ( i ) +  Q-{ -2 [~H(I+z i )  2 + p  
2 + i 3  �9 ' 

where 

R,  (t) = V-8t, T~ = I/8, T -= 1/8 + (2H) -~ (Po~ - -  P,),  

f 2Qt, ~ = O, 

F ( t ) = I 2 H t  + Q - - H  ( l - - e x p  --813t ) [~=~0, 
( 9 )  
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dt (Q -k 2[~Ht)[(8 - -  3[) [ - -  [3r" (4 - - / ) ( 2  4- [3[) -~ 

d[ 24 (Q -k 2~Ht) - -  2[~H[ z (4 - -  [) 

R2 (t) --= 1 - -  f (t). 

If [3 = O, the last equation is integrated in analytical form. With the obvious initial 
condition t = 0 when f = O, it follows that t = f2/6 - fs/24, and hence 

4{ [' ( +]} ' <,0> [ = - - ~  1 - - 2 c o s  arccos 1 t -t- , "~ = - - - -  
3 16 , 8 

where the expression for T 2 follows from the condition R2(T 2) = 0. When 8 ; 0, the last 
equation in Eq. (9) is integrated numerically. 

The solution of the analogous problem for a borehole with a fixed face pressure takes 
the form in Eqs. (5)-(7), as before, but the expressions for ui(t, r) are considerably more 
cumbersome. They are given here only for the case when ~ = 0, retaining terms of the order 
of in g and unity (inclusive). We have 

( ) - , (  ,~, R , - - r )  
ul (t, r) = - -  (Poo - -  P.) In 1 t In 

E r RI 

/ + )-'( ) u= (t, r) = Po -~- (P= - -  P.) In - -  1 In . . . . .  r exp (--;~t), 
g 

(11) 

u3 (t, r) = Q (r-- R._), 

) )] u~(t, r ) = O ! i n -  , - -  In - - r  e x p ( - - M  , 

where 

T 

RI(I )  - (18t) l/a, T 1 = 1/18, 

18 k \ P ~ - - P o  ] \  ~ 6 ] ' 

[ +] i 
R~ (t) = 2 cos 1 arccos ( 1 - -  30  + "~o -- 

3 ' - 3 

In both the cases here considered, 

(12) 

the borehole operation has an influence on pressure 
Pb over the dimensionless time ~i after the onset of the process; the influx from the sur- 
rounding medium begins after a time T, and the borehole is sensitive to the influence of 

this influx up to a time T + T 2. 

The variation in the pressure at the face and the external boundary of the lens is 
shown in Fig. i for a process with fixed yield. Two versions of development of the pro- 
cess are possible. If Q from Eq. (3) is no greater than the critical value Q, which depends 
on ~ and H from Eq. (2) (note that Q and H have the dimensionality of pressure and ~ is di- 

mensionless), stabilization occurs. In this case, Pb is in range (p,, p**) and 

( 1 / ( 1--[-~T2 1 )r2__[ Q - - H  
l i m p ( t ,  r ) = p , - l - H  l n r + - - ~ - - - 2 T 2  + H  - -  ( 1 3 )  

When O = Q,, the function in Eq. (13) takes the value p** at the point r = i. If O > 
Q,, such steady asymptotic conditions are impossible. When Pb reaches the value p**, the 
flux through the lens boundary ceases, Pb begins to fall, and when Pb reaches p,, this flux 
begins again. This pattern corresponds to the establishment of self-oscillatory filtration 
conditions. The condition of onset of such filtration conditions is easily obtained from 

Eq. (13): 

Q > Q , = H [ 1  ~(1--4~2--~=)2_t_8 ] q - ~ ( P * * - - P * ) "  ( 1 4 )  
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Fig. 2. Dependence of the face pressure on the total vol- 
ume of petroleum taken in conditions of constant yield for 
borehole 27 (a) and 28 (b) of the Salymsk deposit; points 
correspond to experiment [15] and curves to theory; a) 2~" 
jQ = 1.53"10 -3 m3/sec, 8 = 0.01, j = 3"10 -z~ m~/Pa'sec, 
p, = 46.15 MPa; b) 2~jQ = 1.27"10 -3 m3/sec, ~ = 0.008, j = 
3.47.10 -I~ m3/Pa.sec, p, = 39.1MPa; lens radius 1560 (a) 
and 910 (b) m; dashed curves correspond to the pressure 
drop in closed lenses (Q = 0, ~ = 0); V, 103 m 3. 

If ~ = 0 and z 2 = i/8 in accordance with Eq. (i0), the simple condition Q > H follows 
from Eq. (14). For a process with fixed pressure at the borehole face, the condition of 
onset of self-oscillation is 

Q>Q.=(p**--po) ln- l (1/e)  ( ~ = 0 ,  p . > p o ) .  (15)  

If this condition is not satisfied, stabilization occurs, with an asymptotic pressure 
profile p, + Q in (r/e) and a dimensional borehole yield of 2~jQ. 

Steady Self-Oscillation 

Consider a periodic process of filtration over a sufficiently large time from borehole 
startup, when the initial conditions cease to influence the characteristics of the process. 
Such steady self-oscillation arises when Eq. (14) or Eq. (15) holds and is evidently relaxa- 
tional in character. Choosing the time origin at the moment when influx through the lens 
boundary ceases, and denoting the dimensionless lengths of the cycles of absence and presence 
of such influx by T l and T 2, 
tion, it is assumed that 

so that T l + T 2 is the dimensionless period of self-oscilla- 

p(t, r ) = f  pl (% r), 0 ~ < ~ < T , ,  
! p2("c, r), TI--~'c<T~+ T2, (16)  

= f - -  [l (TI + T2)-q(T~ + T+), 

where [x] denotes the integer part of x. The function pi(t, r) is the solution of Eq. (i) 
with the boundary conditions at the borehole in Eq. (2) and the following boundary condi- 
tions at the external lens boundary 

ap,_=o,  ap~ - Q §  r =  1. (17)  
Or Or 

The initial conditions take the form of periodicity conditions 

p~ (T~, r) = p= (0, r), p, (0, I) = p , ,  

P2(T2, r)----p1(0, r), pl(0,  I) - p * * .  
(18) 

The solution of this problem by the integral-relation method does not involve any fun- 
damental difficulties. The final results are given here for ~ = 0, i.e., for an influx 
through the lens boundary which does not depend on Pb in the interval (p,, p**). For a 
borehole with constant yield 

ui (t + Ta_ i - -  % r), 0 ,~ e ~< r ~< R2 ~t) 

p~(t, r ) = l u ~ ( t +  Ta_~__%, r)+(__l)~ua(t, r), r>R2(l)  t<~%<~ Ti" 

[ u 3 ~ (t -- ~2, r), t > ~2, 

(19) 
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where 

r z -  I ] 
ui(t, r ) = H  ln r  2 ( t - - T 3 _ i + x f )  -kvi ( t ,  r), i - - l ,  2; 

2 

v l ( t , r ) = p * * + Q  ~ ~ - 2 ( t _ r ~ + ~ )  ; v~(t, r ) = p , ;  

u~ (t, r) = Q (r - -  'e~)~ ; , ~  (t) = I - -  f (t), 
2 (1 - -  R~) 

(20) 

and f and x 2 are defined in Eq. (i0). 

The definitions of T I and T 2 here are 

T1 = (2H) -~ (p** - -  p ,  - -  Q/4), Tz = [2 (Q - -  H)I -x (p** - -  p ,  - -  Q/4). (21)  

The maximum p+ and minimum p-  p r e s s u r e  a t  t h e  f a c e  i s  

p+ = p**@O,25(H- -Q) - -kHlne ,  p- = p, .- i-O,25H-l-Hlne.  (22)  

Thus ,  t h e  a m p l i t u d e  p+ - p -  = p c ,  - p ,  - 0.25Q o f  p r e s s u r e  o s c i l l a t i o n s  a t  t h e  f a c e  i s  
somewhat  s m a l l e r  t h a n  t h e  a m p l i t u d e  o f  p r e s s u r e  o s c i l l a t i o n s  a t  t h  l e n s  b o u n d a r y .  Note  
t h a t  T l ,  T2,  p+,  and p -  may be d e t e r m i n e d  e x p e r i m e n t a l l y  f rom t h e  c u r v e  o f  f a c e - p r e s s u r e  
v a r i a t i o n .  Then i t  i s  s i m p l e  t o  f i n d  Q, p c ,  and p** - i . e . ,  q u a n t i t i e s  c h a r a c t e r i z i n g  t h e  
h y d r a u l i c  r e l a t i o n  be t ween  t h e  l e n s e s  in  t h e  inhomogeneous  bed - f rom Eqs .  (21)  and ( 2 2 ) .  

F o r  a b o r e h o l e  w i t h  c o n s t a n t  f a c e  p r e s s u r e ,  t h e  s o l u t i o n  t a k e s  t h e  fo rm in  Eq. ( 1 9 ) ,  
as  b e f o r e ,  b u t  Eq. (20)  i s  r e p l a c e d  by t h e  r e l a t i o n s  

u~(t, r) =- P~ + Ci ( ln ''re - - r )  e xp ( - k t )  q- IQ i----2, i =  l, 

Ci = ( - - I / Q  [1 - -  exp (--ETi)][1 - -  exp ( - -E (T 1 ~- T~))1-1, 

(23) 

where X, ~2, and R 2 are defined in Eq. (12), and u3(t , r) in Eq. (ii). 

In this case, the maximum H + and minimum H- values of the borehole yield are 

H+ = Q 1 - -  exp (--LTf) 
1 - -  exp [ - -k  (T1 + Tf)I ' 

1 - -  exp ( - - k T 0  .] 
H - = Q  1 - -  1 - - e x p [ - - k ( T , + T . . ) ]  " 

(24) 

It is again simple to estimate Q, p,, and p** from the easily determined values of T z, 
Tf, H +, and H-. 

Thus, this simple model allows an acceptable qualitative explanation to be given not 
only for the decrease observed in the rate of pressure drop in the initial period of develop- 
ment of the deposit but also for the appearance of oscillations in the face pressure and yield. 

Comparison with Experiment 

The quantitative correspondence of the proposed theory and actual data is evaluated by 
means of the results of industrial experiments on the drop in bed pressure at boreholes 27 
and 28 of the Great-Salym field in western Siberia. These data have been used in most of 
the works cited above and also in [15]. It is assumed that sharp decrease in the rates of 
pressure drop in the first few months of borehole operation occurs on account of eruption 
of oil from adjacent lenses. 

The dimensional yield 2~jH of boreholes 27 and 28 is 2"10 -3 and 1.6.10 -3 m3/sec, re- 
spectively; the pressure at the face at the moment of change in rate of pressure drop is 
36.5 and 32 MPa, respectively. At this time, the total volume of petroleum withdrawn is 
approximately 104 m 3 in both cases; the initial bed pressure is 50 MPa; the borehole radius 
is 0.15 m. It has been established that the lens radius for the given boreholes with piezo- 
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conductivity~= 0.i-i0 m2/sec and hydroconductivity j = 2"10 -I~ to 7"10 -3 m~/Pa'seo is in 
the range 200-5000 m, which is in good agreement with the physical concepts adopted regard- 
ing the collector structure of the Bazhenovskii formation. 

Data on the pressure drop in boreholes 27 and 28 as a function of the volume of petroleum 
collected [15] are compared in Fig. 2 with the corresponding theoretical curves following 
from the proposed model. The piezoconductivity in both cases is taken to be 1 m2/sec. It 
is evident that, despite the roughness and relative arbitrariness of the model concepts 
adopted, fair agreement between the experimental and theoretical data is observed, permitting 
the conclusion that these concepts are fundamentally adequate. 

Oscillations have been recorded repeatedly on the curves of pressure drop and yield 
of boreholes in the Salymsk deposits. Their appearance is also well explained by the given 
method. Reliable estimation of the parameters Q, p,, and p** from such data entails conti- 
nuous recording of the face pressure and the volume of petroleum taken over a long period, 
without change in borehole operation. As follows from the above analysis of self-oscilla- 
tion, data obtained from boreholes made in relatively small lenses and operating with small 
yield are most informative from this viewpoint. 

Curves of Pressure Recovery and Indicator Diagrams 

In estimating the parameters of petroleum-containing beds from the data of hydraulic 
tests, curves of pressure recovery (CPR) and indicator diagrams (ID) of the boreholes are 
useful. Both these problems are now briefly considered for operating conditions with a 
fixed yield, taking ~ = 0 for the sake of simplicity. 

In the problem of finding the CPR, it is assumed, so as to be specific, that the borehole 
is switched off in conditions when there is constant maintenance of the lens from the sur- 
rounding medium (i.e., for H > Q, when there is no self-oscillation). Taking the instant 

at which the borehole is switched off as the time origin, the initial condition on the pres- 
sure field in the lens is obtained on the basis of Eqs. (7)-(10) 

p(O,  r) = p ~  H l n r - - O , 5 ( H - - Q ) ( r  ~ -  i), (25) 

where pO is the value of Pb < P** at the time that the borehole is shut off. 

The solution of Eq. (I) is sought in the form of a system of functions Pk(t, r), k = I, 
..., determined in successive intervals of dimensionless time of length T k. The initial 
condition on pl(t, r) evidently coincides with Eq. (25) and the initial conditions on pk(t, 
r) when k ~ 2 take the form Pk(0, r) = Pk_l(Tk_l, r); T k is determined from the chain Of 
relations p2k.l(T2k_ l, i) = p**, pzk(T2k, i) = p,. The boundary conditions follow from 
Eqs. (2) and (3) 

]imr ~Pl; ~ =:Q ] + ( - - l )  j'~-I r~o Or ~-0, r r=i 2 (26) 

30 \t 

25 
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32  ) I ) 20 I 

Fig .  3. I n f l u e n c e  of  e x t e r n a l  i n f low of  l i q u i d  on the  
behavior of the pressure at the lens boundary (a) and at 
the borehole face (b) in the course of pressure recovery 
at g = 0.02, p~ = 33, p, = 33.45, p** = 34 MPa, ~ = 0, 
H = 3 MPa; i) Q = 0; 2) 25 MPa. 
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If this system of functions is found, the pressure in the lens is 

_ h 

p(t, r ) = ] p , , ( t _ ~ ,  T,, r~, y T , . ~ I < ~ T , .  (27) 
i = 1  i = 1  i = l  

The need to introduce successive intervals of dimensionless time in which the solution 
of the problem has a different functional form is associated with the possibility that os- 
cillations will appear in the course of pressure recovery. In a definite N-th interval, 
these oscillations unavoidably cease, i.e., TN = ~. If oscillations do not appear at all, 
then obviously N = 2. 

Again using the integral-relation method, it is found that 

0 ,~ [ul(i, r', R , ( l ) ~ r i t ~  3_3 - 
p,(l, r).-p:-F' ~ ( r - - - l )  ,-@2Qt + i u  2(t, r), R 1 ( O > r ,  40 

!u,~ (t - -  3/40, r), t > 3/40, 

ul(t, r) = H l n r  - - -  H 2 
T (r - -  1) - -  2 m ,  G (t) = -'V / 

40 -~-- t, 

u~(t,r) THr - - ~ +  2 5 .  s R~r2 32 r3~R~), 

u~(t,r)- I-1 ( 7  r~ 2 ) - -  �9 r 3 exp ( - -g t ) ,  
4 +H 30 1- 3 

Pk (t, r) : Pk- ,  (t + Th_ l, r) + ( - -1 )  k - I  u~(t, r), k ~ 2, 

[0, r <~ Ro(t) 

u,,(t, r) = ~ Q ( r -  R._,F- , r >.~o (t) t < ! 
1 2 (I -- Ro_) " 8 '  
{0,5Qr ~ q- 2Q ( t - -  118), t > 1/8, 

(28) 

where R 2 = 1 - f and f is defined in Eq. (i0). 

Theoretical dependences of the pressure at the lens boundary and at the borehole face 
on the dimensionless time based on Eqs. (27) and (28) are shown in Fig. 3. The form of 
the CPR curves obtained for lenses that are hydraulically related with the surrounding 
medium differs significantly from that for closed lenses (Q = 0). Thus, the model here 
proposed permits the satisfactory explanation both of a considerable increase in the charac- 
teristic time of pressure recovery with the appearance of hydraulic relation of the lenses 
and of incomplete pressure recovery: the limiting asymptotically achievable pressure in the 
lens is less than the initial bed pressure by an amount in the range from pm - p, to pm - 
p**. The presence of liquid influx is able to produce considerable pressure oscillations 
at the lens boundary, but such oscillations are practically imperceptible at the borehole 

face. 

A Series of calculations for the operational conditions of some working boreholes of the 
Salymsk deposit are performed, in order to investigate the influence of the hydraulic rela- 
tion between petroleum-containing volumes in collectors with large-scale inhomogeneity on 
the borehole ID. In such problems, startup of the borehole is with constant yield, but 
some time after startup the yield changes discontinuously to a new constant value; the pres- 
sure field in the lens in this process is found by superposing various of the linear prob- 
lems on borehole startup considered above (the corresponding solutions are not given 
here, and likewise there is comparison of theoretical and experimental ID). A general idea 
of the influence of a hydraulic relation between the lenses on the ID may be obtained on 
the basis of the curves in Fig. 4, which are plotted for some of the given cases. It is 
readily evident from an analysis of these curves that the influence of petroleum inflow from 
the neighboring lenses on the ID form reduces to the appearance of sections that are con- 
vex to the depression axis on the ID, which corresponds completely to the ID behavior ob- 
served experimentally and in industrial conditions [16]. Note that attempts are fairly 
often made to explain this behavior in terms of decrease in effective permeability of the 
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Fig. 4. Characteristic indicator diagrams for a 
borehole in a lens of radius 200 m; K = 1 m2/sec; 
depression Ap = p~ - P0, initial yield 2~jH = 
1.157.10 -4 m3/sec with a discontinuous increase 
of 2.316"10 -4 m3/sec after each 8.64"104 sec. 
Curve I corresponds to a closed lens, 2 to switch- 
ing-on of a flow of intensity 1.157"10 -3 m3/sec 
after a period of 1.054"107 sec from borehole start- 
up and curves 3 and 4 to switching-on of a flow of 
intensity 7.52"i0 -4 mB/sec after 6.3"I0 e sec; ~ = 
0.01 (2, 3) and 0.05 (4); 2~jH, jAp, m3/sec. 

near-face region of the borehole. This explanation cannot be regarded as correct, since 
deterioration in hydroconductivity in this region leads, contrariwise, to the appearance 
of sections that are convex to the yield axis. An example is the filtration to a borehole 
in a cracked -porous bed, when the pressure reduction in the near-face region leads to 
partial or complete closure of the cracks, and hence to decrease in permeability there; in 
this case, the dependence of the yield on the depression reaches a plateau with increase in 
depression in general [17]. 

The results obtained reliably indicate that all the anomalous properties of petroleum 
extraction from significantly inhomogeneous beds of the Bazhenov formation enumerated above 
may be successfully explained within the framework of a single structural-hydraulic model 
based on the concept of a hydraulic relation between large-scale inhomogeneities; see also 
[5, 12]. The conclusions derived from this model are completely acceptable not only in 
qualitative but sometimes also in quantitative terms, despite the very approximate assump- 
tions regarding the properties of this relation. Therefore, it is expedient to refine 
this model in the future, directly considering the problem of filtration in two homogeneous 
lenses immersed in a homogeneous matrix, with a permeability considerably lower than that 
of the lens material. If there is no limiting gradient with filtration in the matrix, such 
problems are solved by standard methods using (for circular lenses) a bipolar coordinate 
system; in the presence of a limiting gradient, the very nontrivial problem of filtration 
with an unknown boundary is obtained. 

NOTATION 

b, bed power; H, Q, reduced fluxes equal to the dimensional borehole yield and the flux 
through the lens boundary divided by 2~j; k, permeability; j, hydroconductivity; p, pres- 
sure; P0, Pb, P~, pressure at the face and at the lens boundary, and initial bed pressure; 
p,, p**, critical pressure corresponding to the appearance and disappearance of the external 
flux; R, dimensional radius of lens; R i, r, dimensionless boundary of filtration zone and radial 
coordinate; t, T i, dimensionless time and its characteristic values; ui, vi, auxiliary func- 
tions; E, dimensionless borehole radius; ~, piezoconductivity; p, viscosity; ~i, character- 
istic intervals of dimensionless time; the superscripts plus and minus denote the maximum and 
minimum values in the self-oscillatory cycles. 
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